

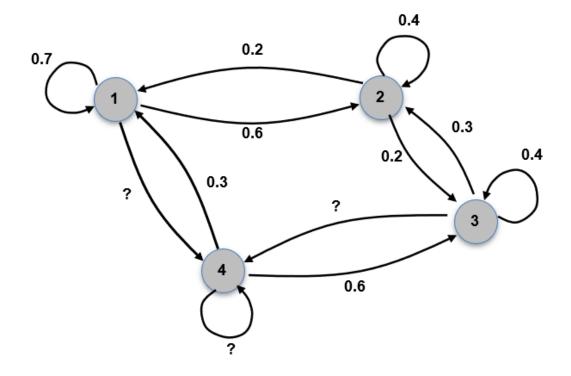
Homework 5

MCMC, Learning

Milad Gholamrezanejad

Q1-MCMC

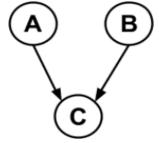
Consider a Markov chain with the following state transition graph for a 1D distribution, where the numbers by the edges are transition probabilities. Derive the corresponding stationary distribution $P_{\infty}(X = i) = \pi(i)$ for i = 1, 2, 3, 4. Write down the complete derivations.



Q2 - Bayesian Network Parameter Learning

Consider the following Bayes Net on binary variables $A, B, C \in \{0, 1\}$, with CPDs defined as:

$$\begin{split} P(A) &= \alpha \ A + (1 - \alpha) \ (1 - A), \\ P(B) &= (1 + B) \ / \ 3, \\ P(C \mid A, B) &= \gamma 1 (C = A + B) + (1 - \gamma) \ 1 (C \neq A + B). \end{split}$$



A) Write down the log-likelihood function in terms of α and γ and for the following data. Simplify your answer as much as possible. Notice that some CPDs have not been parameterized by table representation.

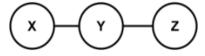
a ⁱ	b ⁱ	c ⁱ
1	1	1
1	0	1
0	1	0
0	0	1
1	0	0
1	1	0

B) Write down the derivatives of the log-likelihood function for α , γ and find the optimal (maximum-likelihood) values of α and γ by setting the derivatives equal to zero.

Q3- Learning MRF

Consider the following MRF on binary variables $X, Y, Z \in \{0, 1\}$, with the log-linear joint distribution

$$p(X, Y, Z) = \frac{1}{z} exp(\alpha 1(X = Y) + \beta YZ + \gamma 1(Z \neq X + Y))$$



Your task is to obtain the optimal (maximum likelihood) values of the parameters α , β , and γ given the training data below. To do this you have to follow the steps below

a) Find the partition function Z as a function of α , β , and γ . Simplify as much as possible.

b) Write down the log-likelihood function using part (a) and the provided data.

c) Find the optimal values of α , β , and γ by differentiating with respect to each of these parameters and setting equal to zero.

Hint: In case you need a change of variable, feel free to use $u = \exp(v)$.

x ⁱ	y ⁱ	z^{i}
0	0	0
1	0	1
1	1	0
0	1	1
0	0	1